
BRITISH MATHEMATICAL OLYMPIAD

Round 1 : Wednesday 19th January 1994

Time allowed Three and a half hours.

Instructions • Full written solutions are required. Marks awarded
will depend on the clarity of your mathematical
presentation. Work in rough first, and then draft
your final version carefully before writing up your
best attempt. Do not hand in rough work.

• One complete solution will gain far more credit
than several unfinished attempts. It is more
important to complete a small number of questions
than to try all five problems.

• Each question carries 10 marks.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Start each question on a fresh sheet of paper. Write
on one side of the paper only. On each sheet of
working write the number of the question in the
top left hand corner and your name, initials and
school in the top right hand corner.

• Complete the cover sheet provided and attach it to
the front of your script, followed by the questions
1,2,3,4,5 in order.

• Staple all the pages neatly together in the top left
hand corner.

Do not turn over until told to do so.

BRITISH MATHEMATICAL OLYMPIAD

1. Starting with any three digit number n (such as n = 625) we
obtain a new number f(n) which is equal to the sum of the
three digits of n, their three products in pairs, and the product
of all three digits.
(i) Find the value of n/f(n) when n = 625. (The answer is

an integer!)
(ii)Find all three digit numbers such that the ratio n/f(n)=1.

2. In triangle ABC the point X lies on BC.
(i) Suppose that ! BAC = 90◦, that X is the midpoint of BC,

and that ! BAX is one third of ! BAC. What can you say
(and prove!) about triangle ACX?

(ii)Suppose that ! BAC = 60◦, that X lies one third of the
way from B to C, and that AX bisects ! BAC. What can
you say (and prove!) about triangle ACX?

3. The sequence of integers u0, u1, u2, u3, . . . satisfies u0 = 1 and

un+1un−1 = kun for each n ≥ 1,

where k is some fixed positive integer. If u2000 = 2000,
determine all possible values of k.

4. The points Q,R lie on the circle γ, and P is a point such
that PQ,PR are tangents to γ. A is a point on the extension
of PQ, and γ′ is the circumcircle of triangle PAR. The circle
γ′ cuts γ again at B, and AR cuts γ at the point C. Prove
that ! PAR = ! ABC.

5. An increasing sequence of integers is said to be alternating

if it starts with an odd term, the second term is even, the
third term is odd, the fourth is even, and so on. The empty
sequence (with no term at all!) is considered to be alternating.
Let A(n) denote the number of alternating sequences which
only involve integers from the set {1, 2, . . . , n}. Show that
A(1) = 2 and A(2) = 3. Find the value of A(20), and prove
that your value is correct.


